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COMPARISON DIFFERENTIAL TRANSFORM
METHOD WITH ADOMIAN
DECOMPOSITION METHOD FOR
NONLINEAR INITIAL VALUE PROBLEMS
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ABSTRACT. This paper present a numerical comparison between the
differential transformation method (DTM) and Adomian decomposition
method (ADM) for solving nonlinear dispersive K(m,n) equation. In
order to show the effectiveness of the DTM, the results obtained from the
DTM is compared with available solutions obtained using the ADM and
with exact solutions. It illustrates the validity and the great potential of
the differential transform method in solving nonlinear partial differential
equations.
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1. INTRODUCTION

Most phenomena in real world are described through nonlinear equations.
Nonlinear phenomena play important roles in applied mathematics, physics
and in engineering problems in which each parameter varies depending on
different factors. The importance of obtaining the exact or approximate so-
lutions of nonlinear partial differential equations (NLPDEs) in physics and
mathematics, it is stil a hot spot to seek now methods to obtain new exact
or approximate solutions. In the recent years, many authors mainly had
paid attention to study solutions of nonlinear partial differential equations
by using various methods. Among these are the Adomian decomposition
method (ADM), tanh method, homotopy perturbation method (HPM), sinh-
coshmethod, HAM, DTM and variational iteration method (VIM). Since
the beginning of the 1980s, Adomian [1]-[4] has presented and developed a
so-called decomposition method for solving algebraic, differential, integro-
differential equations. The solution is found as an infinite series which con-
verges rapidly to accurate solutions. The method has many adventages over
the classical techniques, mainly, it makes unnecassary the linearization, per-
turbation and other restritive methods and assumptions which may change
the problem being solved, sometimes seriously. The concept of differential
transform method was first introduced by Zhou [17] in 1986 and it was
used to solve both linear and nonlinear initial value problems in electric
circuit analysis. The main advantage of this method is that it can be ap-
plied directly to NLPDEs without requiring linearization, discretization, or
perturbation. It is a semi analytical- numerical technique that formulizes
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Taylor series in a very different manner. The method constructs, for dif-
ferential equations, an analytical solution in the form of a polynomial. Not
like the traditional high order Taylor series method that requires symbolic
computation, the DTM is an iterative procedure for obtaining Taylor series
solutions. Another important adventage is that this method reducing the
size of computational work while the Taylor series method is computation-
ally taken long time for large orders. This method is well addressed in [9],
[11], [13], [15], [16]. This paper consider the following nonlinear dispersive
K(m,n) equation with fractional time derivatives:

(1) Up + (um)x + (un)mcx =0,

where m,n > 0. The classic nonlinear dispersive K (m, n) equation first intr-
duced by Rosenau and Hyman [14] and for cetain values of m and n, K (m,n)
equation has solitary waves which are compactly supported. Recently, large
number ofmethods were suggested to study the nonlinear dispersive K (m,n)
equations, such as Exp-function method [9], variational iteration method
[10], [16], variational method [11] and homotopy perturbation method [10],
[12]. In this paper, it is extended the application of the differential trans-
form method to construct analytical approximate solutions of the dispersive
K[m,n| equation (1). Then we compare he results with the previously ob-
tained results by using the ADM in [1]-[4], and exact solutions. With this
technique, it is possible to obtain highly accurate esults or exact solutions
for differential equations.

2. DIFFERENTIAL TRANSFORM METHOD

The basic definitions and fundamental operations of the two-dimensional
differential transform are defined in [9], [11], [13], [15]. Consider a function
of two variable w(z,y) be analytic in the domain Q and let (z,y) = (z0, yo)
in this domain. The function w(z,y) is then represented by one series whose
centre at located at w(xo,yo). The differential trasform of the function is
the form

1 8k+h’l,U(x7y)
2 o, y)
(2) W(h, k) = k'h'{ Oxkoyh Laso,yo)7

where w(z, y) is the original function and W (z, y) is the transformed func-
tion. The transformation is called T-function and the lower case and upper
case letters represent the original and transformed functions respectively.
Then its inverse transform is defined as

3) w(z,y) = ZZWQU?J (@ —z0)*(y — y0)"

k=0 h=
The relations 2 and 3 imply that

1 [0 hw(z,y) k h
() S| - w)
kZth% klh! 8@’“81/ (z0,%0)
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In a real application and when (zg, yo) are taken as (0,0), then the func-
tion w(z,y) is expressed by a finite series and Eq.(3) can be written as

(5) w(x,y) =D > W(z,y)zy",

k=0 h=0

in addition, Eq.(5) implies that >3° . S0 | W(z,y)a*y" is negligi-
bly small. Usually, the values of m and n are decided by convergences of
the series coefficients.

Table 1: Operations for the two-dimensional differential transformation

Original function Transformed function

w(z,y) = u(z,y) £ v(z,y) W(k,h) =U(k,h) £ V(k, h)

w(z,y) = au(z,y) W(k, h) = aU(k, h)

w(z,y) = 2dzy) W(k,h) = (k+1)U(k +1,h)

w(z,y) = 2 f/y) W(k,h) = (h+1)U(k,h + 1)

w(z,y) = %g;w Wk h) = (k+1)(k+2) - (k+r)(h+1)(h+2) - (h+s)U(k+r h+s)
w(z,y) = u(w y)v(z v) W(k,h)=3F_ S U h—s)V(k—r,s)

w(z,y) = Wk, h) = 6(k — m,h —n) = 8(k — m)s(h —n) = { (1) Oftokfefw:is:l and b =n
wa,) = ule (e ) 2550 Wik = Sho S S Tha o T T i)
w(a,y) = S 220 Wk, h) = z’i:0 zi;m + D)k =7+ 1)U +1,h—s)V(k—7+1,5)
w(z,y) = u(z, y)M W(k,h) =Sk _ Sh_j(k—r+2)(k—r+1)U(rh—s)V(k—r+2,5)
wizy) = u(o P elnyay) | Wik = Sk, Shor st o XU h— s —p)V(t,5)Q(k = — t,p)

3. ADOMIAN DECOMPOSITION METHOD

Consider the differential equation

(6) Lu+ Ru+ Nu =0,

where L and R are linear differential operators, and Nu represents the
nonlinear terms. The operator L is assumed to be easily invertible. Applying
the inverse operator L~! to both sides of (6), and using the given conditions
we obtain

(7) u=f— L' (Ru) - L™ (Nu),

where f is the function that aries from the given initial conditions that
are assumed to be prescribed. Adomian decomposition method defines the
solution u by a series of components

(8) U=> un,
n=0

where the components ug, u1,us,--- are usually determined recursively
by using the relation
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(9) ug = f, upy1 = —L7 ' (Rug) — L7 Nug), k>0.

The nonlinear term F'(u) = Nu is represented by an infinite series

(10) Fl) =Y A,

n=0

where A, are he so-called Adomian polynomials that can be calculated for
all forms of nonlinearity according to algorithms set by Adomian [3] defined

by

4. ILLUSTRATIVE EXAMPLES

In this section, we have chosen to present two test problems, namely
K(2,2) and K(3,3) with new initial conditions to be considered.

Example 4.1. We first consider the initial value problem K (2,2)
2 2 4 .91
(12) u + (u*)z + () gz =0,  u(z,0) = gosin { 7@

with the exact solution [5]

(13) w(z, ) = %csin2 (I - Ct)

Taking the two-dimensional transform of Eq. (12) by using the related
definitions in Table 1, we have

(14)
—2( Sk (k= + Dulr h - s)ulk — 7+ 1, s)>>
—6( oo ( Zhook —r+1)(k—r +2)(r + Du(r +1,h — s)u(k — 7 +2,5)
—2( >k, Z:_O(kr+1)(kr+2)(kr+3)u(r,hs)u(kr+3,s)§§
u(k, h+1) =

(h+1)

by applying the differential transforminto (12), the initial transformation
coefficients are thus determined by
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u(z,t) = %03252 - %051?4 - éc%t + ﬁc‘lxt?’ - mcsxtS
1 1 1 1 1
(15) *ﬁf‘%&wfﬁwﬁw+@ﬁﬂfaﬁﬁw
T om0t © 56 T aosc © " aaniedt T
— %52033:515 + 276430 At — mc%f’tf’

Hence from Eq. (15) U(k,0) =0,if k=1,3,5,--

C
C
4,0) = ——
U(4,0) =~ —
(16) U6,0)= 2.

Substituting Eq. (16) in Eq. (14), and by recursive method we can calculat-
ing anothers values of U(h, k). Our approximation has one more interesting
property, if we expand exact solution (13) using Taylor expansion about
(0,0), we have the series same as the our approximation (15). Now, we
consider ADM for same equation.

Applying L' to both sides of (12) yields

3

Substituting the decomposition series (8) for u(x,t) into (17) gives

(18) Zun(ac,t) = gcsin2 <1x> — L_l(ZAn + ZB”)’
n=0 n=0 n=0

where A, and B,, are Adomian Polynomials that represent the nonlinear
operators (u?), and (u?)qx, respectively. Following our discusion above, we
introduce the recursive relation

(17) u(z,t) = écsin2 (i:c) — L_l((u2):C + (u2)m)

4 1
(19)  wp(z,t) = gcsin2 (11:)’ ugs1(w,t) = ~L7'(Ag + By), k>0.
To calculate Adomian polynomials A, and B,,, we substitute m =n = 2

in (11) to obtain:

Ao = F(ug) = (uf)a,
Ay = u1 F' (up)
= (2u1ug)x
Ay = ugF'(ug) + %U?F"(Uo)
(20) = (2uzug +uf)s

99
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and
By = G(up)
= (40)7zas
By = u1G’ (up)
= (2u1u0) 2z
By = usG'(ug) + 2ulG”(u0)
(21) = (2uguo + ©3)vaa,
substituting (20) and (21) into (19) gives:

4 1
uo(z,t) = gcsin2 (Zx>,

uy(2,t) = —L (A + Byo)

= ——Cthln ( )

(22) ug(w,t) = —L~'(A; + Bl)
uz(z,t) = —L 1 (As + Bz)

1 1
ﬁc‘lt?’ sin (51),

This gives the solution in a series form

4 1 1 1 1 1
u(z,t) = gcsin2 (Z:t) — gCQt sin (EI) + Ec?’t2 cos (§x>

]. 43‘, 1
+ﬁct 51n<§x>+---

Example 4.2. We now consider the initial value problem K (3, 3)

(23)

(24) Ut + (u3)w + (US)mzx =0, u(aj, 0) = @ sin (%l‘)

with the exact solution

(25) u(z,t) = 3

Taking the two-dimensional transform of Eq. (24) by using the related
definitions in Table 1, we have

Ve . <xct>
TSH’I



Comparison differential transform method with adomian decomposition method 101

(26)
~a( b (4 (oo (Shzite ==t Dutnh = s = ppute.ute - r =1+ 1.9)) ) ))
—6( SF_ o (hr (2, Zzgg(kaft—%—1)(7‘+1)(t+1)u(7‘+1,h—3—p)u(t+l,s)u(k—r—t—b—l,p)))))
—1s(zﬁ:0 (zf;; (zﬁzo (zg;g(k —r—t+ 1) (k-7 —t+2)(t+ Du(r,h —s — plut + 1, s)ul(k —r — t+2,p)>>i
—3( f::o(Zf;o"(Zi.;o(Zg;g(k—r—tﬂ)(k—r—t+2)(k—r—t+3)u(r,h—s—p)u(t,s)u<k-r—t+3,p):
u(k, h+1) =

(h+1)

by applying the differential transform into (25), the initial transformation
coefficients are thus determined by

1 1 1 1
u(z,t) = —6\/603/215 + @\/607/2153 + 6\/(_3\/5:10 - m\/gc5/2xt2

1 1 1
9 3/2,2, 7/2,2,3 _ 3
(27) + 108\/60 x°t 5832\/60 x°t 324\/5\/53;
1 5/2, 3,2
+ 5832\/60 x°t

Hence from Eq.(27)

w(0,0) =0, k=0,2,4,

u(1,0) = \/GE
Ve
u(3,0) —@
u(0,1) = 7?03/2
_ V6 o
V6 5
1,2) = ———¢*/?
u(1,2) 108°
V6 s
2) = ——~ /2
u(3:2) = —5e55¢

Substituting Eq. (28) in Eq. (26), and by recursive method we can cal-
culating another values of U (h, k).
If we expand exact solution (24) using Taylors expansion about (0,0), we
have the series same as the our approximation (27).

We consider ADM for same equation. In a paralel manner to our analysis
presented above we obtain

(29) u(z,t) = @ sin <%w> — L7N((@®)e + (4*)gac)-

Using the decomposition series assumption (8) for u(x,t) gives
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(30) g%un(x,t) = @ sin <%1) - L‘1<§:AZ° + i B%),

n=0 n=0

where AZ’ and B:f) are Adomian polynomials that represent the nonlin-
ear operators (u), and (u3)z.., respectively. In view of (30), we use the
recursive relation

1 [y 0y
1) walet) = 5osn (o). wer(ot) = L (AE B, k20

Adomian polynomials A% and B/ can be calculated as before to find:

A = (ud)a,
A? = (3u1u%)w,

(32) A‘;/° = (3u2ug + 3u0u%)x,

and

B = (u})aaz,

BY* = (3u1t) e
(33) B (3uguf + 3uou}) =g,
Subsitituting (32) and (33) into (31) gives:

= 667t?’cos lm
T 324 37)

Consequently, the solution in a series form is given by

(35) u(z,t) = @ sin (%w) -

3

3

Vée3 1 V6ed o, . (1 V6eT g 1
6 t co - t“ sin + cos +

s | -z t
3 36 324
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5. CONCLUSION

This paper applied the differential transformation technique and Ado-
mian decomposition method to solve initial value problem. Some difficulties
in the Adomian decomposition methods disappear by DTM. Differential
transform method is equivlent to the Adomian decomposition method in
this problem. As an advantage of the differential transform method over
the decomposition procedure of Adomian, DTM provides a solution to the
problem without calculating Adomians polynomials. In this work, we use
the MAPLE Package to calculate the series obtained from the methods.
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